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We present an experimental study of turbulent Rayleigh–Bénard convection (RBC)
in which the input energy that drives the turbulent flow is in the form of periodical
pulses. A surprising finding of the study is that in this ‘kicked’ thermal turbulence
the heat transfer efficiency is enhanced compared to both constant and sinusoidally
modulated energy inputs. For the apparatus used in the present study, an enhancement
of 7% of the dimensionless Nusselt number Nu has been achieved. The enhancement
is found to depend on two factors. One is the synchronization of the kicking period
of energy input with the intrinsic time scale of the turbulent flow. When the repetition
period of the input energy pulse equals half of the large-scale flow turnover time,
a resonance or optimization of the enhancement is achieved. The other factor is
the pulse shape (the inverse square of the energy input duty cycle). We find that a
spiky pulse is more efficient for heat transfer than a flatter one of the same energy.
It is found that in this kicked thermal turbulence there exist appropriate ranges of
the kicking strength A and the kicking frequency f in which the Rayleigh number
Ra grows to a saturation level and that the saturated Ra fluctuates between a
lower saturation level Rasat

l and an upper saturation level Rasat
u . For large enough

saturated Ra, power-law dependences on f and A are found: Rasat
l ∝ (Af )0.80±0.02 and

Rasat
u ∝ f 0.70±0.01A0.84±0.02. The scaling law for Rasat

l is found to agree quantitatively
with the prediction of a mean-field theory of kicked turbulence (Lohse, Phys. Rev. E
vol. 62, 2000, p. 4946) when the latter is appropriately extended to the case of kicked
thermal turbulence. It is further found that a large-scale circulatory flow (LSC) still
exists in the kicked RBC, and that its Reynolds number has the same scaling with
Ra as in the steadily driven case, i.e. Ref ∝ Ra0.46±0.01. The present study provides an
example of achieving enhanced heat transfer in a convective system by first triggering
the emission of clustered thermal plumes via an active control and then synchronizing
the transport of the plume clusters with an internal time scale.

1. Introduction
Turbulent flows driven by time-dependent forcing abound in nature and in industrial

applications. One can readily think of many examples such as the Earth’s atmosphere
driven by periodical heating from the sun’s radiation, the tidal ocean current induced
by periodical gravitational attractions of the moon and the sun, the blood flow in
veins driven by the beat of the heart, and the flow in the intake of combustion
engines driven by the piston. However, despite its ubiquity, periodically driven flows
have attracted relatively little attention.

In recent years, a series of works has focused on the effect of the external time-
dependent forcing on the global properties of the turbulent system. Two specific types
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of time-dependent forcing have been theoretically studied. One uses periodical pulses
as energy inputs to drive turbulent flow. Lohse (2000) studied this periodically ‘kicked’
turbulence in shear flows using a mean-field theory. The effect of kicked forcing on the
time evolution of the Reynolds number was analysed. He showed that the Reynolds
number will first grow and then reach a saturation level determined by the kicking
strength and kicking frequency. Some of these theoretical results were numerically
verified later using a Gledzer–Ohkitani–Yamada (GOY) shell model (Hooghoudt,
Lohse & Toschi 2001). However, to our knowledge, no experimental investigation has
been conducted using periodically kicked forcing in any type of flow.

The other forcing type is the sinusoidal modulation of the energy input rate on
the outer length scale of the turbulent system. Heydt, Grossmann & Lohse (2003a)
studied the response of a turbulent system to a weak modulation of the energy input
rate using a mean-field theory. They predicted that the response is dependent on
the relationship between the modulation frequency and the energy cascade frequency
scale. For low driving frequencies the system follows the modulation with almost
constant amplitude while for higher frequencies the response amplitude decreases
inversely with the modulation frequency. Subsequent numerical simulation using a
GOY shell model and a reduced wave vector set approximation (REWA) (Heydt,
Grossmann & Lohse 2003b), and direct numerical simulation (DNS) (Kuczaj, Geurts
& Lohse 2006) reported similar results. The theoretical results of Heydt et al. (2003a)
have been verified by Cadot, Titon & Bonn (2003) in an experiment conducted in a
closed geometry between two counter-rotating disks.

In this paper, we present an experimental study of periodically kicked turbulence
in a Rayleigh–Bénard convection cell. To the best of our knowledge, this is the first
attempt to study the effect of this specific type of forcing in a precisely controlled
experimental system. The steadily driven Rayleigh–Bénard convection (RBC) has
been studied extensively in the past two decades. The state of fluid motion in the
system is characterized by three control parameters, namely the Rayleigh number
Ra(= αg�H 3/νκ), the Prandtl number Pr(= ν/κ), and the aspect ratio Γ (= D/H ),
where � is the applied temperature difference across a fluid layer of height H

and lateral dimension D, g is the gravitational acceleration, and α, ν, and κ

are, respectively, the volume expansion coefficient, kinematic viscosity, and thermal
diffusivity of the convecting fluid. Two important response parameters can also be
defined: the Nusselt number Nu(= J/(χ�/H )), which is the ratio of the effective
thermal conductivity of the convecting fluid to the conductivity of the quiescent fluid;
and the Reynolds number Re(= UH/ν). Here χ is the thermal conductivity of the
fluid, J is the heat flux across the fluid layer, and U is a typical velocity scale of the
convective flow.

The remainder of this paper is organized as follows. The experimental setup will
be described in § 2. The experimental results of the Rayleigh number response, local
temperature fluctuations, the large-scale circulation, and Nusselt number enhancement
will be presented and discussed in §§ 3.1–3.4, respectivley. In § 3.5, we present a version
of Lohse’s mean-field theory modified for the case of kicked thermal turbulence and
compare its results with our experimental findings.

2. Experiment
The experiment was conducted in two upright cylindrical cells filled with water

(Pr � 4.3). The two convection cells have the same inner diameter of D = 19.4 cm
and different heights H of 19.4 cm and 39.2 cm. The corresponding aspect ratios of the
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two cells are therefore Γ = 1 and Γ = 0.5, respectively. Details about the apparatus
have been described elsewhere (Shang & Xia 2001) and here we mention only some of
its essential features. The upper and lower plates are made of copper and the sidewall
is a transparent Plexiglas tube. In the experiment, a program-controlled power supply
is used to heat the lower plate, so that a pulsed heating can be imposed on the system.
The upper plate is cooled by a refrigerated recirculator at a constant temperature.
During the experiment the entire convection cell was wrapped by several layers of
thermal insulating material and placed in a thermostat box with a temperature set
at the mean temperature (40◦C) of the convecting fluid. The thermostat box has a
temperature stability of 0.05◦C.

Five thermistors with 2.4 mm diameter, 1 s time constant, and 0.005◦C accuracy are
embedded in the upper and lower plates to probe the local temperature in the plate.
Three are placed in the lower plate along a diameter, one being at plate centre and
the other two at mid-radius from the plate centre, and all are 0.5 mm from the fluid-
contact surface. The other two thermistors are placed in the upper plate, opposite to
each other, at mid-radius from the plate centre and are 1.5 mm from the fluid-contact
surface. The typical sampling rate for the plate temperature measurement is between
0.5 and 1 Hz. In addition, two smaller thermistors with 0.2 mm diameter, 15 ms
response time, and 20 mK/� temperature sensitivity are placed inside the cell to
probe local temperatures in the convecting fluid, one at the cell centre and the other
near the sidewall at mid-height. The sampling rate for measurements in the fluid
varies from 8 to 64 Hz, depending on the value of Ra. During the experiment the cell
was tilted by a small angle so that the large-scale circulatory flow was locked in the
vertical plane that contains the sidewall thermistor.

At time t = 0, the pulsed heating power is imposed on the lower plate. The local
temperature time series are measured, from which Rayleigh number and Nusselt
number are obtained. Different values of Ra and Nu had been achieved by varying
three pulse parameters: the pulse width �tkick , the separation time �t between
adjacent pulses, and the pulse height P . Although the experiments were conducted by
varying the above pulse parameters, most of the results shown below are presented in
terms of an alternative set of three parameters (Lohse 2000): the kicking frequency
f = 1/�t , kicking strength A = P�tkick (which is just the energy of the pulse), and
the pulse repetition period Tkick = �t + �tkick . For each set of pulse parameters,
a corresponding constant heating experiment with the same average heating power
Pc = P�tkick/(�tkick + �t) is also performed for comparison.

3. Results and discussion
3.1. Rayleigh number response

Figure 1(a) shows the time series of Ra measured in the Γ = 1 cell for a fixed kicking
strength A = 347.66 J and various kicking frequencies f , from bottom to top, 5×10−4

Hz, 3.36 × 10−3 Hz, 1.13 × 10−2 Hz, 3.33 × 10−2 Hz, 1.25 × 10−1 Hz, and 3.33 × 10−1

Hz. For clarity, a segment of saturated Ra(t) measured with f = 0.033 Hz is shown in
figure 1(b). Here Ra(t) is obtained based on the instantaneous temperature difference
�T (t) = Tb(t) − Tt (t) between the plates, where the bottom plate temperature Tb(t)
is the arithmetic mean of the readings from the three thermistors imbedded in the
bottom plate and Tt (t) is that based on the readings from the two thermistors
imbedded in the top plate. The figure clearly shows that during each pulsed heating
cycle there is a kick and a subsequent decay in Rayleigh number. Overall, there is
growth up to some saturation level Rasat when the kicking frequency f is larger than



136 X.-L. Jin and K.-Q. Xia

Time (s)

0 25000 50000

R
a 

(t
)

107

108

109

(a)

Time (s, arb. orig.)

50 100 150 200 250 300
4.8

5.2

5.6

6.0

(×108)

Rau
sat

Ral
sat

(b)

0

Figure 1. (a) Time evolution of Ra measured in the Γ = 1 cell for a fixed kicking strength
A = 347.66 J, and various kicking frequencies, from bottom to top, f = 5×10−4 Hz, 3.36×10−3

Hz, 1.13 × 10−2 Hz, 3.33 × 10−2 Hz, 1.25 × 10−1 Hz, and 3.33 × 10−1 Hz. (b) A segment of
saturated Ra(t) measured with A = 347.66 J and f = 0.033 Hz (the fourth curve from the
bottom shown in (a)). The dashed lines denote the lower saturation level Rasat

l and the upper
saturation level Rasat

u .

3.36 × 10−3 Hz in our system. The saturated Ra(t) is seen to fluctuate between a
lower saturation level Rasat

l and an upper saturation level Rasat
u , which are obtained

respectively by averaging the individual peaks and valleys of the saturated Ra(t).
It is also seen that, as f increases, the saturation level increases but the difference
between the lower and upper saturation levels decreases. For low kicking frequency
there is almost no overall growth to the saturation level, as the excitation caused by
the kick always returns to the initial level after decay. In his mean-field theory of
kicked turbulence for shear flows, Lohse (2000) has predicted that, for appropriate
values of A and f , the Reynolds number Re will grow up to some saturation level
and then fluctuate between a lower saturation level Resat

l and an upper saturation
level Resat

u when the energy input during �tkick balances energy loss during �t . As
we will show in § 3.3, a power-law relationship between Ra and Re still holds in
kicked thermal turbulence, which means Ra and Re should exhibit similar qualitative
behaviour. Thus the above measured properties of the Rayleigh number verify the
first prediction of the Lohse theory.

In figure 2 we examine the dependence of the saturated Ra on the kicking frequency
f and kicking strength A. The upper panels show data measured in the Γ = 1 cell and
the lower panels are those in the Γ = 0.5 cell. Figure 2(a) shows in log-log scale Rasat

l

and Rasat
u as functions of f for two different kicking strengths A = 347.66 J and 1008

J. It is clear that there exists power-law dependence for f above certain value. The
figure also shows that as f decreases the difference between Rasat

l and Rasat
u increases.

Also, when f becomes smaller than ∼10−3 , the power-law behaviour breaks down.
The non-power-law regime corresponds to those values of Ra that cannot achieve a
saturation state as shown in figure 1(a). Figure 2(b) shows the log-log plot of Rasat

l

and Rasat
u as functions of A for two different kicking frequencies f = 0.033 Hz and

0.0034 Hz. The figure also shows that a power-law behaviour emerges when f and/or
A are larger than some value. If we examine the corresponding Rasat in both figures
2(a) and 2(b), it is seen that the values of A and f that produce power-law behaviour
also give rise to Rasat � 108. Therefore, the kicked convective flow may be regarded
as in the turbulent regime when Rasat is above this value. The dashed lines show
power-law fits to those data points with Rasat above ∼108.
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Figure 2. Log-log plots of the lower saturation level Rasat
l (solid symbols) and the upper

saturation levels Rasat
u (open symbols) versus the kicking frequency f (a, c) and the kicking

strength A (b, d), respectively. Data measured for (a) two values of A = 347.66 J (triangles)
and 1008 J (squares); (b) two values of f = 0.033 Hz (circles) and 0.0034 Hz (diamonds); (c)
a fixed A = 347.66 J (triangles); (d) a fixed f = 0.033 Hz (circles). The upper panels (a, b) are
data measured in the Γ = 1 cell and lower panels (c, d) those from the Γ = 0.5 cell. Lines are
power-law fits.

Γ = 1 Γ = 0.5

Rasat
l Rasat

u Rasat
l Rasat

u

A = 347.7 J f 0.78±0.02 f 0.70±0.01 f 0.82±0.03 f 0.73±0.01

A = 1008 J f 0.81±0.04 f 0.67±0.01 − −
f = 0.033 Hz A0.81±0.01 A0.82±0.01 A0.79±0.01 A0.80±0.01

f = 0.0034 Hz A0.81±0.05 A0.91±0.05 − −

Table 1. The best power-law fits to data points in figure 2.

Figures 2(c) and 2(d) show, respectively, Ra vs f and Ra vs A relationships
measured in the Γ = 0.5 cell, for which only one set of scans for each parameter
was made. For this cell, the lowest Rasat is around 109, so all data points appear to
fall within the scaling regime. The data otherwise show similar properties as those
measured in the Γ = 1 cell. In table 1 we list the best power-law fits to the data
points.
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Summarizing results for both Γ = 1 and Γ = 0.5 cells, we conclude that there
is a power-law dependence of Rasat

l and Rasat
u on kicking frequency f and kicking

strength A for large enough saturated Ra (�108). Because of the relatively narrow
scaling range, there are some variations in the scaling exponents. By averaging the
exponents of Rasat

l (Rasat
u ) with f for different values of A and Γ , and the exponents

of Rasat
l (Rasat

u ) with A for different value of f and Γ , respectively, we have the
following results:

Rasat
l ∝ (f A)0.80±0.02, (3.1)

Rasat
u ∝ f 0.70±0.01A0.84±0.02. (3.2)

For the lower saturation level Rasat
l , the power-law dependence on f and A give the

same exponent. Thus Rasat
l scales as the product of Af . For the upper saturation

level Rasat
u , the power-law dependence on f and A give different exponents. However,

the two exponents are close to each other. Therefore, the above result also verifies
another prediction of Lohse’s mean-field theory that the saturated Ra in the turbulent
regime scales as the product of Af . However, as the theory was developed for plane
shear flows the predicted scaling exponents are different from the present case. In §
3.5 we will present a modified version of Lohse’s mean-field theory for the case of
kicked thermal turbulence and make a more quantitative comparison.

3.2. Local temperature fluctuations

To quantify the temperature fluctuations in kicked thermal turbulence, standard
deviations of temperature signals are measured. Data for corresponding constant-
heating cases are also taken for comparison. We use σb, σt , σc and σs to represent the
standard deviations of temperature fluctuations in the bottom plate, the top plate,
the cell centre and the sidewall, respectively. Superscripts (k) and (c) denote kicked
and constant-heating cases respectively. Figures 3(a), 3(b), 3(c), and 3(d) respectively
show σb, σt , σc, and σs as functions of Ra. The results measured in the kicked and
constant-heating cases are plotted in the same figure for comparison.

For constant heating, the dependence of σ on Ra at different positions can be fitted
by power laws: σ

(c)
b ∼ Ra0.84±0.01, σ

(c)
t ∼ Ra0.91±0.01, σ (c)

c ∼ Ra0.87±0.01, σ (c)
s ∼ Ra0.73±0.01.

These results are similar to those recently reported by Sun & Xia (2007). The
fact that local temperature fluctuations measured inside the conducting plates have
similar power-law exponents to those measured in the cell interior suggests that they
are dominated by signatures of stochastic turbulent fluctuations in the convective
flow. It is also known that signals related to thermal plumes constitute an important
part of these fluctuations (Sun & Xia 2007). Figure 3 also shows that for a given
Ra the magnitudes of temperature fluctuations measured inside the plates and at
cell centre are of the same order while that measured near the sidewall is about one
order larger. This is consistent with the fact that thermal plumes are predominantly
transported in the sidewall region (Shang et al. 2003; Xi, Lam & Xia 2004).

For the pulsed heating case, the σ
(k)
b vs Ra relationship has a transition at Ra ∼

2 × 109 (figure 3a). When Ra is below this transition point, σ
(k)
b may be regarded as

constant within experimental uncertainties and there is a large difference between σ
(k)
b

and σ
(c)
b . When Ra is above the transition point, σ

(k)
b increases as Ra increases and it

begins to overlap with σ
(c)
b . For σ

(k)
t (figure 3b) and σ (k)

c (figure 3c), similar properties
can be found. However, the value of the transition Ra (∼2 × 108) is much lower than
that for σ

(k)
b . For temperature fluctuations near the sidewall (figure 3d), σ (k)

s and σ (c)
s

almost coincide with each other. Only small differences exist at low Ra.
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Figure 3. Standard deviations of local temperatures as a function of Ra measured at
(a) bottom plate; (b) top plate; (c) cell centre; and (d) sidewall. Open triangles: pulsed
heating (σ (k)); open circles: constant heating (σ (c)). Lines are power-law fits to the constant
heating data.

The behaviour of σ (k) may be understood as the result of competition between two
contributions: the modulation from the heating pulse and the stochastic turbulent
fluctuations from convecting fluid such as plume emissions. At low Ra, stochastic
turbulent fluctuations are weak and negligible when compared to the modulated
temperature variations from the heating pulses. So the temperature fluctuation is
dominated by the kicked heating and thus does not change much with the increase of
Ra. At high Ra, the stochastic turbulent fluctuations are strong enough to overwhelm
the contribution from the pulsed heating. Thus, the temperature fluctuation is
dominated by the stochastic turbulent fluctuations, just like the constant heating
case. As a result, σ (k) overlaps with σ (c) and increases with the increasing Ra. Since
the pulsed heating power is directly fed to the lower plate, σ

(k)
b is much more sensitive

to the pulsed heating power than σ
(k)
t and σ (k)

c . This is probably the reason why the

transition Ra for σ
(k)
b is much higher than that for σ

(k)
t and σ (k)

c . In both pulsed and
constant heating cases, most of the plumes pass through the sidewall region. Thus,
compared to the conditions inside the plates and at the cell centre, the temperature
fluctuations near the sidewall are much larger and so the contribution from turbulent
fluctuations always overwhelms that from the modulated heating. This is probably
the reason why the difference between σ (k)

s and σ (c)
s is very small.

To illustrate the above argument, we show in figure 4 three segments of steady-state
local temperature time series measured inside the bottom plate for pulsed heating
cases with fixed kicking strength A = 347.66 J and three different kicking frequencies.
When f is low (figures 4a and 4b), the temperature is fully dominated by the pulsed
heating. When f is high (figure 4c), the temperature in the bottom plate no longer
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Figure 4. Segments of steady-state local temperature time series measured in the bottom plate
for pulsed heating cases with fixed kicking strength A = 347.66 J and three different kicking
frequencies (a) f = 0.001 Hz, (b) f = 0.033 Hz, and (c) f = 0.5 Hz.

follows the pulsed heating. It is mainly dominated by stochastic turbulent fluctuations
from the fluid.

3.3. The large-scale circulation (LSC)

The existence of a large-scale circulatory flow or LSC is an important feature of
steadily driven RBC. It was first observed by Krishnamurti & Howard (1981) and
has been studied extensively in recent years. Many experimental, theoretical and
numerical investigations have been carried out to study the various aspects of the
LSC (see, for example, Xi, Zhou & Xia 2006, which contains a large compilation
of relevant references). A natural question is, therefore, whether the LSC still exists
in kicked RBC. To answer this, we measured the power spectra and the correlation
functions of the temperature fluctuations near the sidewall of the convection cell.

Figure 5(a) shows the power spectra of mid-height sidewall temperature fluctuations
for a pulsed heating case with pulse parameters �t = 88.1 s, �tkick = 2 s, and P =
173.83 W. The corresponding constant heating case is also plotted for comparison.
A weak peak located at f0 ∼ 6 × 10−3 Hz can be seen for both pulsed and constant
heating cases. This suggests oscillations with characteristic frequency f0 ∼ 6 × 10−3
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Figure 5. (a) Power spectra of temperature time series Ts(t) measured near the sidewall at
mid-height for a pulsed heating case with �t = 88.1 s, �tkick = 2 s, P = 173.83 W (lower line)
and its corresponding constant heating case. (b) Reynolds number Ref as a function of Ra
for pulsed (triangles) and constant (circles) heating cases. The solid lines are power-law fits. (c)
Cross-correlation function between Ts(t) and P (t) for the pulsed heating case with �t = 88.1 s,
�tkick = 2 s, P = 173.83 W. τ0 denotes the time-lag between Ts(t) and P (t). (d) Normalized
time-lag τ0 obtained from 12 measurements of pulsed heating cases.

Hz existing in the system. The fact that the oscillation frequency f0 in the pulsed
heating case is the same as that of the constant heating one is strong evidence that a
large-scale circulatory flow also exists in the kicked RBC and it has the same turnover
time TLSC = 1/f0 as the steadily driven RBC of equivalent heating power. We find
that power spectra for other pairs of pulsed and constant heating cases have similar
properties to those shown in figure 5(a). The circulation frequency f0 may be used to
define a Reynolds number of the LSC, i.e. Ref = 4H 2f0/ν. Figure 5(b) shows Ref

as a function of Ra for both pulsed and constant heating cases. The same power-law
fit was obtained for both cases: Ref ∝ Ra0.46±0.01. In fact, it is found that Ref for
each pair of constant and pulsed heating cases almost coincide with each other. These
results show that the periodically kicked heating does not destroy LSC and that the
LSC turnover time remains unchanged compared with the constant heating cases
with the same saturated Ra. We have found that the LSC is maintained even when
the kicking frequency (f = 1/�t) is much smaller than the circulation frequency f0.
This means that, after a kick, the LSC can continue for many turnover times before
another kick is needed to sustain it.

Figure 5(c) shows the cross-correlation function C(τ ) between the pulsed heating
power P (t) and the mid-height sidewall temperature Ts(t) for a pulsed heating case
with pulse parameters �t = 88.1 s, �tkick = 2 s, and P = 173.83 W. It is seen that
the cross-correlation function has a periodic behaviour with a period equal to Tkick ,
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indicating that overall the sidewall temperature is modulated by the pulsed heating.
The location of the first peak on the left of the origin, denoted as τ0, indicates the
time-lag of Ts(t) from P (t). The peak was smoothed by polynomial fitting and the
peak position was obtained to be τ0 = −47 s. Figure 5(d) shows |τ0| obtained in
more than ten experimental measurements with different pulse parameters. In the
plot |τ0| is normalized by a quarter of the LSC turnover time TLSC obtained from
the same measurement. This figure indicates that most of the measurements give |τ0|
in the range (0.8 − 1.2)TLSC/4, which implies that it takes approximately TLSC/4 to
transport the pulsed heating power from the bottom plate to the mid-height point
near the sidewall. This result reveals that in a convection system driven by kicked
energy input, the boundary layer perturbation induced by the heating power is also
transported by the LSC, just like in a steadily driven system described by the delayed
coupling model (Villermaux 1995).

3.4. Nusselt number enhancement

Heat transport remains a central focus in the studies of turbulent thermal convection.
In this section we examine how heat transport in kicked RBC compares to that
in steadily driven RBC. The Nusselt number Nuk for the kicked heating case and
Nuc for the corresponding constant heating case of equivalent heating power may be
respectively defined as

Nuk =
〈P (t)〉H

〈�T (t)〉Sχ
, (3.3)

Nuc =
PcH

�T Sχ
, (3.4)

where 〈P (t)〉 and 〈�T (t)〉 are the time-averaged heating power and temperature
difference respectively, and Pc is the heating power in the corresponding constant
heating case: Pc = P�tkick/(�tkick + �t). S is the plate area. Figure 6 shows Nuk

and Nuc as functions of Ra in a log-log plot. It is seen that at the resolution of the
plot there appears to be little difference in Nusselt number between the pulsed and
constant heating cases. If we make a power-low fit to the measured data, we obtain an
exponent of about 0.3. As we have not attempted to correct the heat leakages through
the sidewall and the bottom of the cell, we will not make any further quantitative
analysis of the behaviour of Nu. Our objective here is to compare the relative heat
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Figure 7. (a, c) Nuenhance as a function of the normalized pulse repetition period Tkick/TLSC

with a fixed pulse shape index. (b, d) Nuenhance as a function of the pulse shape index δ with a
fixed pulse repetition period. (a, b) Data from the Γ = 1 cell and (c, d) the Γ = 0.5 cell. In (a)
and (c) δ = 2029.5 and 9604, respectively. In (b) and (d) Tkick = 73 s and 196 s, respectively.

transport efficiency (the Nusselt number) between the kicked and steadily driven
cases under otherwise identical conditions. For this, we define the Nusselt number
enhancement as

Nuenhance =
Nuk − Nuc

Nuc

. (3.5)

Figure 7 shows Nusselt number enhancement for kicked RBC, with the upper panels
showing data measured in the Γ = 1 cell and the lower panels those from the Γ = 0.5
cell. All the pulsed heating measurements were made with the same kicking strength
A, i.e. the same energy contained in each pulse. The average values of Ra varied
from 1 × 108 to 3 × 109 for Γ = 1 and those for Γ = 0.5 varied from 7 × 108 to
2 × 1010. Figure 7(a) shows Nuenhance as a function of pulse repetition period Tkick

(= �tkick + �t) with fixed pulse shape. Here Tkick is normalized by the LSC turnover
time TLSC; and �tkick and P were fixed to be 2 s and 173.83 W, respectively. The figure
indicates that pulsed heating leads to an enhancement in Nusselt number within an
appropriate range of Tkick and that when Tkick ≈ TLSC/2, a resonance occurs, i.e. the
enhancement is optimized. When Tkick deviates from TLSC/2, Nuenhance decreases and
eventually goes down to zero. Now that we have found the pulsed heating is more
efficient for heat transport, it is interesting to know whether the enhancement depends
on the shape of the pulse, i.e. would a spiky pulse be more efficient for heat transfer
than a flatter one of the same energy, or vice versa? Here we define a dimensionless
‘pulse shape index’ δ as

δ =
P/�tkick

Pc/Tkick

=

(
Tkick

�tkick

)2

. (3.6)
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It is a measure of the difference in pulse shape between the pulsed heating and
the corresponding constant heating case. Note that the right-hand side of (3.6) is
related to the duty cycle C = �tkick/(�tkick + �t) = �tkick/Tkick of energy input, i.e.
δ = 1/C2. A large δ (or a small duty cycle) means a tall thin pulse and the forcing is
more different from the constant heating case. On the other hand, a small δ means a
short fat pulse, and the limiting case of δ approaching to 1 corresponds to constant
heating. Figure 7(b) shows Nuenhance as a function of δ for a fixed repetition period
Tkick(= 73 s). In the figure, all data points have the same kicking strength A so that
the pulses of varying shape all contain the same amount of energy. Clearly, there is
a monotonic increase of Nuenhance with increasing δ (or with decreasing duty cycle).
For our present apparatus, the largest value of the shape index that can be achieved
for the Γ = 1 cell is δ = 2856 (corresponding to a duty cycle of 1.9%), which gives
rise to Nuenhance of about 7%. When δ decreases to the order of 10 (C ≈ 30%),
no appreciable Nusselt enhancement was found. Similar properties are found for the
Γ = 0.5 cell, which are shown in figures 7(c) and 7(d). For this cell, Nuenhance achieves
a maximum value of 4.7% at Tkick = TLSC/2 for a fixed pulse shape and a maximum
value of about 5% at δ = 16227.5 (C ≈ 0.8%) for a fixed repetition period. These
results suggest that the most efficient heat transfer is achieved when the pulse takes
a δ-function-like shape or a duty cycle approaches zero.

The dependence of Nuenhance on the pulse repetition period Tkick for a fixed pulse
shape may be understood in terms of the interplay between plume emissions and the
large-scale circulation. As shown in § 3.3, the LSC still exists in kicked RBC and
the thermal plumes are also transported by the LSC in kicked thermal turbulence.
Moreover, as shown in figure 5(d), it takes about a quarter of the LSC turnover
time for the plumes emitted from the plates to reach the mid-height of the sidewall.
When combining these results with the delayed-coupling model of Villermaux (1995),
a simple physical picture of kicked thermal turbulence can be sketched. There are two
time scales in the system: pulsed heating period Tkick and LSC turnover time TLSC .
The cell crossing time T0 is related to the LSC turnover time: T0 = TLSC/2 (Villermaux
1995; Sun, Xia & Tong 2005). At the lower plate, boundary layer perturbation is
mainly produced by the heating pulses, and thus has the period of Tkick and thermal
plumes triggered by boundary layer perturbations are transported by the LSC. After
a time TLSC/2, plumes emitted in the lower boundary layer have been transported to
the upper boundary layer. In other words, the emission of thermal plumes is dictated
by pulsed heating (with period Tkick), while the transportation of thermal plumes is
dictated by the LSC (with period TLSC). When Tkick = TLSC/2, the plume emission
period just matches the time needed for the plume to reach the upper plate. This
means that at the moment the first cluster of plumes reaches the upper plate the
subsequent cluster of plumes is being emitted at the bottom plate. It seems that this
synchronized plume emission and transportation is the most efficient way of heat
transfer in the RBC system.

The shape index dependence of Nuenhance for a fixed pulse repetition period may
be understood as follows. A small δ corresponds to a flatter pulse or a large duty
cycle; with Tkick fixed this means that the heating approaches a steadily driven case
and Nuenhance should be zero. When δ increases (with A and Tkick fixed), a more
intense and spiky pulse is generated, which should produce a larger perturbation to
the boundary layer compared to a steadily driven case. As plumes are presumably
produced by boundary layer instabilities, this implies that a spiky pulse is more
efficient in inducing the release of plumes from the boundary layer and these plumes
are more likely to form clusters as they are all generated within a short period of time.
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Figure 8. The relative Nu change Nuenhance measured in an Γ = 1 convection cell with a
sinusoidally modulated heating power input. Here the modulation period Tsin is normalized
by the LSC turnover time TLSC .

When the plumes cluster together they should be more efficient in transporting heat,
as they will suffer less heat loss to the surrounding fluid through diffusion. Therefore,
there is an increase in Nuk when δ increases (or duty cycle decreases). As all the
pulsed heating cases with varying δ have the same corresponding constant heating,
Nuc remains the same when δ increases. Therefore, Nuenhance increases monotonically
with δ. Thus, spiky pulses are more efficient for heat transfer than flatter pulses of
the same energy. In other words, the more the type of forcing is different from the
constant forcing, the more efficient is the heat transfer rate. Our results also show that
a small duty cycle is more efficient than a larger one, i.e. the heater should stay idle
for most of the time and then give the system an intense pulse (kick) for maximum
efficiency.

We also conducted a modulated RBC experiment, in which the system is driven
by a sinusoidally varying power input. The experiment was made at Ra = 3 × 109

for which TLSC ≈ 50 s. The (power) modulation amplitude to offset ratio is 1 and
the modulation period Tsin varied from 10 s to 200 s. The result is shown in figure 8,
where it is seen that no appreciable Nusselt number enhancement is detected within
the experimental resolution. This result further confirms the effect of forcing shape
on Nusselt number enhancement. Since the effective pulse shape index of a sinusoidal
power input is small (δ ∼ 4, which corresponds to a large duty cycle of C ∼ 50%), it
is reasonable that sinusoidal forcing cannot induce a Nusselt number enhancement.

In summary, whether a specific pulsed heating can produce Nusselt number
enhancement depends on two factors. One is the synchronization between the period of
the pulsed heating and the intrinsic time scale (e.g. LSC turnover time) of the turbulent
flow. In our system, when the pulse repetition period equals half a LSC turnover time,
i.e. Tkick = TLSC/2, a resonance occurs and the enhancement is optimized. The other
factor is the pulse shape (or the duty cycle of energy input): sharp pulses (or small duty
cycles) are better for heat transfer than flatter ones of the same energy. Obviously,
if the LSC breaks down at much higher values of Ra, the part of Nusselt number
enhancement due to the synchronization with the LSC turnover time is expected to
be diminished. On the other hand, the part due to enhanced emission of clustered
plumes, induced by spiky pulses, should still be present.



146 X.-L. Jin and K.-Q. Xia

3.5. A mean-field theory for kicked thermal turbulence

Our results in § 3.1 may be understood more quantitatively by modifying Lohse’s
mean-field theory to the case of kicked thermal turbulence. Therefore, the derivations
below follows closely that of Lohse (2000), except for places that are particular for
thermal turbulence.

Because the Rayleigh number plays a similar role in thermal turbulence as the
Reynolds number does in shear flow turbulence, we aim to find a relationship
between Rasat and A and f similar to that between Resat and A and f derived by
Lohse. For thermally driven turbulent flows, the viscous dissipation rate depends on
Ra, Pr , and Nu (see, for example, Shraiman & Siggia 1990):

ε =
ν3Pr−2Ra(Nu − 1)

H 4
≈ ν3Pr−2RaNu

H 4
. (3.7)

By neglecting the heat loss:

ε =
gακP

Sχ
=

gαP

SρCp

, (3.8)

where P is the heating power applied to the lower plate, S is the area of the plate,
and ρ and Cp are respectively the density and the specific heat of the convecting
fluid (the other quantities have already been defined in § 1). To study a convection
system driven by a pulsed heating power, two issues should be first investigated: the
energy input during the pulse activation time; and the energy decay during the time
between two successive pulses. When a pulse is fed to the lower plate, there should
be an energy increase proportional to the dissipation rate,

Ė(t) = βε = β
gαP

SρCp

= ξP, (3.9)

where P is now the pulse height, β is an unknown proportionality constant and
ξ = βgα/(SρCp). After a pulse input the initial energy E0 increases to E1,

E1 ≈ E0 + Ė(t)�tkick = E0 + ξP�tkick = E0 + ξA. (3.10)

A Reynolds number based on the r.m.s. velocity can be defined as (Lohse 2000)

Re(t) =
Hurms

ν
=

H
√

2E(t)

ν
. (3.11)

Then (3.10) can be rewritten as

Re1 = Re0

√
1 +

2H 2ξA

ν2Re2
0

. (3.12)

Equation (3.12) indicates a kick in Reynolds number from Re0 to Re1 when a pulse
of power is fed to the system. It determines the evolution of Reynolds number or
energy during the pulse activation time. Between two successive pulses, the turbulent
activity decays and the Reynolds number evolves from an initial value of Rei to a
value Re(t) in time t according to the following inverse function (Lohse 2000):

t(Re)

τ
=

3

cε,∞
[F (Re) − F (Rei)], (3.13)
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where F (Re) is given by

F (Re) =
1

2Re2

(
−γ +

√
γ 2 + Re2

)
+

1

2γ
ln

(
γ +

√
γ 2 + Re2

Re

)
. (3.14)

In the above cε,∞ is the dimensionless energy dissipation in the large Reynolds number
limit, γ is inversely related to cε,∞, and both constants are of order 1 (Lohse 2000).
Obviously, (3.12)–(3.14) with 0 � t � �t can fully describe the time evolution of the
Reynolds number. During each cycle there is a kick in Reynolds number from Re0 to
Re1 according to (3.12) and a subsequent decay according to (3.13) and (3.14). The
Reynolds number will overall increase until the energy input from a pulse in �tkick

balances the energy loss through decay in �t . A steady state is then achieved in which
the Reynolds number fluctuates between a lower level Resat

l and an upper level Resat
u ,

which should satisfy (3.12), i.e.

Resat
u = Resat

l

√
1 +

2H 2ξA

ν2(Resat
l )2

. (3.15)

Because the system decays from Resat
u to Resat

l during one kicking period (1/f ),
according to (3.13) the two levels should also satisfy

1

τf
=

3

cε,∞

[
F (Resat

l ) − F

(
Resat

l

√
1 +

2H 2ξA

ν2(Resat
l )2

)]
. (3.16)

The above two equations give the relationship between the saturation levels of
the Reynolds number and the two control parameters, the kicking strength A and
kicking frequency f . To make a more direct comparison with experimental results,
we simplify the above relationships to deduce scaling relations between Re and A

and f . As argued by Lohse (2000), a turbulent regime occurs when Resat
l , Resat

u � γ .
This should occur for large enough values of A and f . When this is satisfied, (3.14)
becomes F (Re) ≈ 1/2Re. In turn, (3.16) can be simplified as

1

τf
=

3

2cε,∞

(
1

Resat
l

− 1

Resat
l

√
1 + 2H 2ξA/[ν2(Resat

l )2]

)
, (3.17)

1

τf
∝

√
1 + 2H 2ξA/[ν2(Resat

l )2] − 1

Resat
l

√
1 + 2H 2ξA/[ν2(Resat

l )2]
. (3.18)

If we further assume that 2H 2ξA/[ν2(Resat
l )2] � 1, (3.18) can be simplified as

1

τf
∝ H 2ξA

ν2(Resat
l )2

/Resat
l ∝ A

(Resat
l )3

. (3.19)

Consequently,

Resat
l ∝ (Af )1/3, (3.20)

Resat
u ∼ Resat

l ∝ (Af )1/3, (3.21)

where the last step comes from (3.15). This result shows that in kicked thermal
turbulence both Resat

u and Resat
l scale with the product of Af to a power of 1/3.

In Lohse (2000) a different exponent was obtained for shear flow turbulence. This is
because the relationship between the dissipation rate ε and the kicking strength A is
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different in the two cases. But, as pointed out by Lohse, the essential result is that the
saturation levels scale with the product of Af .

With the Reynolds numbers obtained above, we can deduce the Rayleigh number
evolution in kicked thermal turbulence using the relationship between Ra and Re. A
previous experiment (Lam et al. 2002) has measured the relation between Re and Ra

in steadily driven RBC: Rerms ∝ Ra0.40±0.03. Here we assume that this relationship still
holds in the case of kicked RBC. Although Rerms was not measured in kicked RBC,
in § 3.2 we showed that the Reynolds number based on the circulation frequency
(f0) of the large-scale flow in kicked RBC has the same power-law dependence on
Ra as in steadily driven RBC, i.e. Ref ∝ Ra0.46±0.01, where Ref = 4H 2f0/ν. Thus
Ra should also have an overall growth to a saturation level and the saturated Ra(t)
should fluctuate between a lower saturation level Rasat

l and an upper saturation level
Rasat

u , and these features are confirmed by the experimental results (figure 1). If we
use the relationship Rerms ∝ Ra0.40±0.03 (Lam et al. 2002), a power-law dependence
between the saturation levels of Ra and the product Af can be established:

Rasat
l , Rasat

u ∝ (Af )0.83±0.07. (3.22)

However, if the circulation-frequency-based Reynolds number Ref ∝ Ra0.46±0.01 is
used, we would instead have a different scaling:

Rasat
l , Rasat

u ∝ (Af )0.72±0.03. (3.23)

Comparing these results with the experimental findings from § 3.1, i.e. Rasat
l ∝

(Af )0.80±0.02 and Rasat
u ∝ f 0.70±0.01A0.84±0.02, we see that (3.22), within the experimental

uncertainties, has a quantitative agreement with the experiment (at least for Rasat
l ).

Indeed, it is the r.m.s.-velocity-based Reynolds number that was used in the original
mean-field theory. And here we see that this choice of Reynolds number is supported
by the experimental result.

The above also shows that the agreement between experiment and theory for Rasat
u

is less than satisfactory. We now discuss the possible reasons for this discrepancy
and the limitations of the scaling result. The predicted scaling result is based on the
requirement

X ≡ 2H 2ξA

ν2(Resat
l )2

� 1. (3.24)

This implies a small enough kicking strength A and a large enough lower saturation
level Resat

l . However, Resat
l also depends on A and f . Substituting Resat

l ∝ (Af )1/3

into (3.24), we have

X ∼ A0.33f −0.67 � 1. (3.25)

Therefore, generally speaking, A should be small enough and f should be large
enough to satisfy the requirement X � 1 so that (3.21) can be established. However,
when f is too large, the pulsed heating will approach the limiting case that the lower
plate is continuously heated by a constant heating power with amplitude equalling
the pulse height P . Thus the saturation level of Ra will no longer increase and (3.21)
(and thus (3.22)) will break down. On the other hand, large enough A and f are also
required for the flow to stay in the turbulent regime and for Ra to reach a saturation
level. These analyses indicate that the power-law regime exists only for appropriate
ranges of f and A. This is consistent with our experimental results (figure 2) which
reveal that a power-law dependence of Rasat

l and Rasat
u on A and f exists only when

Rasat is larger than 108.
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Regarding the less-than-quantitative agreement between the experimentally
determined scaling behaviour and the mean-field prediction for Rasat

u , a possible
reason for this is that a more stringent condition for the validity of the scaling regime
is required for Rasat

u than for Rasat
l . From (3.15) we see that in order for Resat

u and
Resat

l (therefore, Rasat
u and Rasat

l ) to exhibit the same scaling behaviour (3.24) must
be satisfied, i.e. X � 1. Thus, although (3.24) is the condition for the validity of the
scaling result (3.20) (which leads to the scaling of both Rasat

l and Rasat
u ), the scaling of

Rasat
u appears to have a more sensitive dependence on this condition via (3.15). Using

the measured Re and (3.17) the value of X can be obtained. The result shows that
(3.24) is in fact not satisfied for most values of the kicking strength A and it is satisfied
only for some of the highest values of the kicking frequency f used in the present
experiment (note, however, that some of the constants used in the estimation of X,
like the dimensionless energy dissipation cε,∞, are those for classical shear flows and
they may be different for turbulent convection). On the other hand, this result may
be taken to imply that the scaling of Resat

l as a product of A and f in kicked thermal
turbulence is a more robust feature than is suggested in the simple mean-field theory.
It should also be mentioned that the original mean-field theory requires �tkick � �t ,
which is not always satisfied in our experiment. This may mean that some of the
conditions in the theory could be less restrictive.

In summary, when appropriately extended to the case of thermal turbulence, the
mean-field theory of kicked turbulence first proposed by Lohse can explain our
experimental results. To the best of our knowledge, the present study is also the first
experimental verification of Lohse’s mean-field theory. Specifically, our experiment
verifies the two main predictions of mean-field theory: first, the saturated Re(t) (Ra(t)
in our system) fluctuates between a lower saturation level and an upper saturation
level; second, for large Re (Ra), the saturation levels scale as the product of Af .

4. Conclusion
We have performed a periodically kicked turbulence experiment in the Rayleigh–

Bénard convection (RBC) system and investigated the impact of this specific type
of forcing on turbulent convective flows and heat transport. Four major findings are
summarized below:

(i) For appropriate ranges of the kicking strength A and the kicking frequency f ,
Ra(t) has an overall growth to a saturation level and the saturated Ra(t) oscillates
between a lower saturation level Rasat

l and an upper saturation level Rasat
u .

(ii) For sufficiently large values of Rasat (∼108), the saturation levels have power-law
dependence on A and f : Rasat

l ∝ (Af )0.80±0.02 and Rasat
u ∝ f 0.70±0.01A0.84±0.02. It is

found that the scaling of Rasat
l agrees quantitatively with the theoretical prediction

of a mean-field theory when the latter is appropriately modified for kicked thermal
turbulence.

(iii) We have found evidence that a large-scale circulatory flow (LSC) still exists
in the kicked RBC, just as in the steadily driven case. It is also found that the LSC
has the same flow strength in both the kicked and steadily driven cases and that the
Reynolds number based on the circulation frequency of the LSC scales with Ra as
Ref ∝ Ra0.46±0.01, which, within experimental resolution, is the same as that of the
steadily driven case.

(iv) A kicked energy input enhances the Nusselt number when appropriate pulse
parameters are selected. Moreover, a resonance in the enhancement is found when the
input pulse period is synchronized with half of the large-scale flow turnover time. For
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the apparatus used in our system, a maximum enhancement of about 7% is obtained.
In principle, this value could be larger with appropriate instrument, for example,
when a power supply capable of producing a more intense pulse is used. We find that
whether a specific pulsed heating can produce Nusselt number enhancement depends
on two factors. One is the synchronization between the period of the pulsed heating
and the intrinsic time scale (e.g. LSC turnover time) of the turbulent flow. When the
pulse repetition period equals half of the LSC turnover time, i.e. Tkick = TLSC/2, the
enhancement is optimized. The other factor is the pulse shape (or duty cycle). It is
found that a spiky pulse is more efficient for heat transport across the convection
cell than a tubby one of the same energy. This result implies that the most efficient
heat transfer is achieved when a δ-function-like pulse is used. Physically, we think
this enhancement is related to a more effective release of clustered thermal plumes,
as the plumes are known to be the main carriers of heat in the RBC system. This is
because an intense and spiky pulse can perturb the boundary layer more effectively
than constant heating and so can more efficiently induce the emission of large clusters
of thermal plumes. Furthermore, when the plumes cluster together they should be
more efficient in transporting heat, as they will suffer less heat loss to the surrounding
fluid through diffusion. When the release of large clusters of thermal plumes is further
synchronized with the LSC turnover time, an enhanced heat transfer is achieved. Our
finding also reveals a mechanism to appropriately design the forcing type so that
more efficient heat transport in the convective turbulence system can be achieved. In
contrast, a sinusoidally modulated energy input is found to produce no detectable
enhancement of heat transfer.

The present work is the first, and a preliminary, experimental investigation of
kicked turbulent flows. There are obviously many issues to be addressed in future
studies. For example, the long period between kicked energy inputs (1/f ∼ few
hundred seconds) provides with us the opportunity to study intermittency effects in
free decaying turbulence in a thermal convection system, which may provide insight
into energy cascades in turbulent flows. The other interesting issue is the long decay
time of the flow, i.e. the large-scale flow can still be maintained (on average) when the
kicking period (Tkick) is much larger than the LSC turnover time (TLSC). This suggests
that the LSC is really a robust phenomenon with an intrinsic time scale that is still
not well understood. The enhanced heat transport is also a surprise finding and may
have applications.

It is a pleasure to acknowledge helpful discussions with D. Lohse and support of
this work by the Research Grants Council of Hong Kong SAR under Grant No.
CUHK403705 and CUHK403806.
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